Linux.pl
Opcje wyszukiwania podręcznika man:
Lista stron man zaczynających się od znaku:
A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z   ALPHA   NUM   OTHER   ALL
xorg.conf(5)                                                      xorg.conf(5)

NAME
       xorg.conf - configuration File for Xorg X server

INTRODUCTION
       Xorg  supports several mechanisms for supplying/obtaining configuration
       and run-time parameters: command line options,  environment  variables,
       the   xorg.conf   configuration   file,  auto-detection,  and  fallback
       defaults.  When the same information is supplied in more than one  way,
       the  highest  precedence  mechanism is used.  The list of mechanisms is
       ordered from highest precedence to lowest.  Note that not  all  parame-
       ters  can  be  supplied  via  all  methods.  The available command line
       options and environment variables (and some defaults) are described  in
       the  Xserver(1)  and  Xorg(1)  manual  pages.   Most configuration file
       parameters, with their defaults, are described below.  Driver and  mod-
       ule  specific  configuration  parameters  are described in the relevant
       driver or module manual page.

DESCRIPTION
       Xorg uses a configuration file called xorg.conf for its initial  setup.
       This  configuration  file  is searched for in the following places when
       the server is started as a normal user:

           /etc/X11/<cmdline>
           /usr/etc/X11/<cmdline>
           /etc/X11/$XORGCONFIG
           /usr/etc/X11/$XORGCONFIG
           /etc/X11/xorg.conf-4
           /etc/X11/xorg.conf
           /etc/xorg.conf
           /usr/etc/X11/xorg.conf.<hostname>
           /usr/etc/X11/xorg.conf-4
           /usr/etc/X11/xorg.conf
           /usr/lib/X11/xorg.conf.<hostname>
           /usr/lib/X11/xorg.conf-4
           /usr/lib/X11/xorg.conf

       where <cmdline> is a relative path (with no ".." components)  specified
       with  the -config command line option, $XORGCONFIG is the relative path
       (with no ".." components) specified by that environment  variable,  and
       <hostname>   is   the   machine's  hostname  as  reported  by  gethost-
       name(__oslibmansuffix__).

       When the Xorg server is started by the "root"  user,  the  config  file
       search locations are as follows:

           <cmdline>
           /etc/X11/<cmdline>
           /usr/etc/X11/<cmdline>
           $XORGCONFIG
           /etc/X11/$XORGCONFIG
           /usr/etc/X11/$XORGCONFIG
           $HOME/xorg.conf
           /etc/X11/xorg.conf-4
           /etc/X11/xorg.conf
           /etc/xorg.conf
           /usr/etc/X11/xorg.conf.<hostname>
           /usr/etc/X11/xorg.conf-4
           /usr/etc/X11/xorg.conf
           /usr/lib/X11/xorg.conf.<hostname>
           /usr/lib/X11/xorg.conf-4
           /usr/lib/X11/xorg.conf

       where  <cmdline>  is  the  path specified with the -config command line
       option (which may be absolute or relative),  $XORGCONFIG  is  the  path
       specified by that environment variable (absolute or relative), $HOME is
       the path specified by  that  environment  variable  (usually  the  home
       directory),  and  <hostname>  is  the machine's hostname as reported by
       gethostname(__oslibmansuffix__).

       The xorg.conf file is composed of a number of  sections  which  may  be
       present in any order.  Each section has the form:

           Section  "SectionName"
               SectionEntry
               ...
           EndSection

       The section names are:

           Files          File pathnames
           ServerFlags    Server flags
           Module         Dynamic module loading
           InputDevice    Input device description
           Device         Graphics device description
           VideoAdaptor   Xv video adaptor description
           Monitor        Monitor description
           Modes          Video modes descriptions
           Screen         Screen configuration
           ServerLayout   Overall layout
           DRI            DRI-specific configuration
           Vendor         Vendor-specific configuration

       The  following obsolete section names are still recognised for compati-
       bility purposes.  In new config files, the InputDevice  section  should
       be used instead.

           Keyboard       Keyboard configuration
           Pointer        Pointer/mouse configuration

       The old XInput section is no longer recognised.

       The ServerLayout sections are at the highest level.  They bind together
       the input and output devices that will be used in a session.  The input
       devices are described in the InputDevice sections.  Output devices usu-
       ally consist of multiple independent components (e.g., a graphics board
       and  a  monitor).   These multiple components are bound together in the
       Screen sections, and it is these that are referenced by the  ServerLay-
       out section.  Each Screen section binds together a graphics board and a
       monitor.  The graphics boards are described in the Device sections, and
       the monitors are described in the Monitor sections.

       Config  file  keywords  are  case-insensitive,  and  "_" characters are
       ignored.  Most strings (including Option names) are also  case-insensi-
       tive, and insensitive to white space and "_" characters.

       Each  config  file  entry  usually  takes up a single line in the file.
       They consist of a keyword, which is possibly followed by  one  or  more
       arguments,  with the number and types of the arguments depending on the
       keyword.  The argument types are:

           Integer     an integer number in decimal, hex or octal
           Real        a floating point number
           String      a string enclosed in double quote marks (")

       Note: hex integer values must be prefixed with "0x", and  octal  values
       with "0".

       A  special  keyword called Option may be used to provide free-form data
       to various components of the server.  The Option keyword  takes  either
       one  or  two  string  arguments.  The first is the option name, and the
       optional second argument is  the  option  value.   Some  commonly  used
       option value types include:

           Integer     an integer number in decimal, hex or octal
           Real        a floating point number
           String      a sequence of characters
           Boolean     a boolean value (see below)
           Frequency   a frequency value (see below)

       Note  that  all  Option  values,  not just strings, must be enclosed in
       quotes.

       Boolean options may optionally have a value specified.  When  no  value
       is specified, the option's value is TRUE.  The following boolean option
       values are recognised as TRUE:

           1, on, true, yes

       and the following boolean option values are recognised as FALSE:

           0, off, false, no

       If an option name is prefixed with  "No",  then  the  option  value  is
       negated.

       Example: the following option entries are equivalent:

           Option "Accel"   "Off"
           Option "NoAccel"
           Option "NoAccel" "On"
           Option "Accel"   "false"
           Option "Accel"   "no"

       Frequency  option  values  consist  of a real number that is optionally
       followed by one of the following frequency units:

           Hz, k, kHz, M, MHz

       When the unit name is omitted, the correct  units  will  be  determined
       from  the  value  and  the expectations of the appropriate range of the
       value.  It is recommended that the units always be specified when using
       frequency option values to avoid any errors in determining the value.

FILES SECTION
       The  Files  section  is used to specify some path names required by the
       server.  Some of these paths can also be set from the command line (see
       Xserver(1) and Xorg(1)).  The command line settings override the values
       specified in the config file.  The Files section is  optional,  as  are
       all of the entries that may appear in it.

       The entries that can appear in this section are:

       FontPath "path"
              sets  the search path for fonts.  This path is a comma separated
              list of font path elements which the Xorg  server  searches  for
              font databases.  Multiple FontPath entries may be specified, and
              they will be concatenated to build up the fontpath used  by  the
              server.   Font  path  elements  may be either absolute directory
              paths, or a font server  identifier.   Font  server  identifiers
              have the form:

                  <trans>/<hostname>:<port-number>

              where  <trans>  is  the  transport type to use to connect to the
              font server (e.g., unix for UNIX-domain sockets  or  tcp  for  a
              TCP/IP  connection),  <hostname>  is the hostname of the machine
              running the font server, and <port-number> is  the  port  number
              that the font server is listening on (usually 7100).

              When  this entry is not specified in the config file, the server
              falls back to the compiled-in default font path, which  contains
              the following font path elements:

                  /usr/lib/X11/fonts/misc/
                  /usr/lib/X11/fonts/TTF/
                  /usr/lib/X11/fonts/Type1/
                  /usr/lib/X11/fonts/75dpi/
                  /usr/lib/X11/fonts/100dpi/

              The  recommended font path contains the following font path ele-
              ments:

                  /usr/lib/X11/fonts/local/
                  /usr/lib/X11/fonts/misc/
                  /usr/lib/X11/fonts/75dpi/:unscaled
                  /usr/lib/X11/fonts/100dpi/:unscaled
                  /usr/lib/X11/fonts/Type1/
                  /usr/lib/X11/fonts/Speedo/
                  /usr/lib/X11/fonts/75dpi/
                  /usr/lib/X11/fonts/100dpi/

              Font path elements that are found to be invalid are removed from
              the font path when the server starts up.

       RGBPath "path"
              sets  the path name for the RGB color database.  When this entry
              is not specified in the config file, the server  falls  back  to
              the compiled-in default RGB path, which is:

                  /usr/share/X11/rgb

       Note that an implicit .txt is added to this path if the server was com-
       piled to use text rather than binary format RGB color databases.

       ModulePath "path"
              sets the search path for loadable  Xorg  server  modules.   This
              path  is  a  comma  separated list of directories which the Xorg
              server searches for loadable modules loading in the order speci-
              fied.   Multiple  ModulePath  entries may be specified, and they
              will be concatenated to build the module search path used by the
              server.

SERVERFLAGS SECTION
       In  addition to options specific to this section (described below), the
       ServerFlags section is used to specify some global Xorg server options.
       All  of  the entries in this section are Options, although for compati-
       bility purposes some of the old style  entries  are  still  recognised.
       Those old style entries are not documented here, and using them is dis-
       couraged.  The ServerFlags section is optional, as are the entries that
       may be specified in it.

       Options  specified in this section (with the exception of the "Default-
       ServerLayout" Option) may be overridden by  Options  specified  in  the
       active ServerLayout section.  Options with command line equivalents are
       overridden when their command line equivalent  is  used.   The  options
       recognised by this section are:

       Option "DefaultServerLayout"  "layout-id"
              This  specifies  the  default ServerLayout section to use in the
              absence of the -layout command line option.

       Option "NoTrapSignals"  "boolean"
              This prevents the Xorg server from trapping  a  range  of  unex-
              pected  fatal  signals  and  exiting cleanly.  Instead, the Xorg
              server will die and drop core where  the  fault  occurred.   The
              default  behaviour  is  for the Xorg server to exit cleanly, but
              still drop a core file.  In general you never want to  use  this
              option  unless you are debugging an Xorg server problem and know
              how to deal with the consequences.

       Option "DontVTSwitch"  "boolean"
              This disallows the use of the  Ctrl+Alt+Fn  sequence  (where  Fn
              refers  to one of the numbered function keys).  That sequence is
              normally used to switch to another "virtual terminal" on operat-
              ing  systems  that  have  this  feature.   When  this  option is
              enabled, that key sequence has no special meaning and is  passed
              to clients.  Default: off.

       Option "DontZap"  "boolean"
              This disallows the use of the Ctrl+Alt+Backspace sequence.  That
              sequence is normally used to terminate the  Xorg  server.   When
              this option is enabled, that key sequence has no special meaning
              and is passed to clients.  Default: off.

       Option "DontZoom"  "boolean"
              This  disallows  the  use  of   the   Ctrl+Alt+Keypad-Plus   and
              Ctrl+Alt+Keypad-Minus  sequences.  These sequences allows you to
              switch between video modes.  When this option is enabled,  those
              key sequences have no special meaning and are passed to clients.
              Default: off.

       Option "DisableVidModeExtension"  "boolean"
              This disables the parts of the VidMode  extension  used  by  the
              xvidtune  client  that  can  be  used to change the video modes.
              Default: the VidMode extension is enabled.

       Option "AllowNonLocalXvidtune"  "boolean"
              This allows the xvidtune client (and other clients that use  the
              VidMode  extension) to connect from another host.  Default: off.

       Option "DisableModInDev"  "boolean"
              This disables the parts of the Xorg-Misc extension that  can  be
              used  to modify the input device settings dynamically.  Default:
              that functionality is enabled.

       Option "AllowNonLocalModInDev"  "boolean"
              This allows a client to connect from  another  host  and  change
              keyboard  and  mouse  settings  in the running server.  Default:
              off.

       Option "AllowMouseOpenFail"  "boolean"
              This allows the server to start up  even  if  the  mouse  device
              can't be opened/initialised.  Default: false.

       Option "VTInit"  "command"
              Runs  command  after  the VT used by the server has been opened.
              The command string is passed to "/bin/sh -c", and  is  run  with
              the  real  user's  id  with stdin and stdout set to the VT.  The
              purpose of this option is to allow system dependent VT initiali-
              sation commands to be run.  This option should rarely be needed.
              Default: not set.

       Option "VTSysReq"  "boolean"
              enables the SYSV-style VT switch sequence for  non-SYSV  systems
              which support VT switching.  This sequence is Alt-SysRq followed
              by a function key (Fn).  This prevents the Xorg server  trapping
              the  keys  used  for the default VT switch sequence, which means
              that clients can access them.  Default: off.

       Option "XkbDisable" "boolean"
              disable/enable the XKEYBOARD extension.  The  -kb  command  line
              option  overrides  this  config  file  option.   Default: XKB is
              enabled.

       Option "BlankTime"  "time"
              sets the inactivity timeout for the blank phase of  the  screen-
              saver.   time  is  in  minutes.   This is equivalent to the Xorg
              server's -s flag, and the value can be changed at run-time  with
              xset(1).  Default: 10 minutes.

       Option "StandbyTime"  "time"
              sets  the inactivity timeout for the standby phase of DPMS mode.
              time is in minutes, and the value can  be  changed  at  run-time
              with  xset(1).   Default: 20 minutes.  This is only suitable for
              VESA DPMS compatible monitors, and may not be supported  by  all
              video  drivers.   It  is  only enabled for screens that have the
              "DPMS" option set (see the MONITOR section below).

       Option "SuspendTime"  "time"
              sets the inactivity timeout for the suspend phase of DPMS  mode.
              time  is  in  minutes,  and the value can be changed at run-time
              with xset(1).  Default: 30 minutes.  This is only  suitable  for
              VESA  DPMS  compatible monitors, and may not be supported by all
              video drivers.  It is only enabled for  screens  that  have  the
              "DPMS" option set (see the MONITOR section below).

       Option "OffTime"  "time"
              sets  the  inactivity  timeout  for  the off phase of DPMS mode.
              time is in minutes, and the value can  be  changed  at  run-time
              with  xset(1).   Default: 40 minutes.  This is only suitable for
              VESA DPMS compatible monitors, and may not be supported  by  all
              video  drivers.   It  is  only enabled for screens that have the
              "DPMS" option set (see the MONITOR section below).

       Option "Pixmap"  "bpp"
              This sets the pixmap format to use for depth 24.  Allowed values
              for  bpp  are  24 and 32.  Default: 32 unless driver constraints
              don't allow this (which is  rare).   Note:  some  clients  don't
              behave well when this value is set to 24.

       Option "PC98"  "boolean"
              Specify  that  the  machine  is  a Japanese PC-98 machine.  This
              should not be enabled for anything other than the  Japanese-spe-
              cific PC-98 architecture.  Default: auto-detected.

       Option "NoPM"  "boolean"
              Disables something to do with power management events.  Default:
              PM enabled on platforms that support it.

       Option "Xinerama"  "boolean"
              enable or disable XINERAMA extension.  Default is disabled.

       Option "AllowDeactivateGrabs" "boolean"
              This option enables the use of  the  Ctrl+Alt+Keypad-Divide  key
              sequence  to  deactivate  any  active  keyboard and mouse grabs.
              Default: off.

       Option "AllowClosedownGrabs" "boolean"
              This option enables the use of the Ctrl+Alt+Keypad-Multiply  key
              sequence  to  kill clients with an active keyboard or mouse grab
              as well as killing any application  that  may  have  locked  the
              server,   normally   using  the  XGrabServer(3)  Xlib  function.
              Default: off.
              Note that the options AllowDeactivateGrabs  and  AllowClosedown-
              Grabs  will  allow  users  to  remove  the  grab  used by screen
              saver/locker programs.  An API was written to  such  cases.   If
              you  enable  this  option, make sure your screen saver/locker is
              updated.  Default: off.

       Option "HandleSpecialKeys" "when"
              This option controls when the server uses the builtin handler to
              process  special  key combinations (such as Ctrl+Alt+Backspace).
              Normally the XKEYBOARD extension keymaps will  provide  mappings
              for each of the special key combinations, so the builtin handler
              is not needed unless the XKEYBOARD extension is  disabled.   The
              value of when can be Always, Never, or WhenNeeded.  Default: Use
              the builtin handler only if needed.  The server  will  scan  the
              keymap  for a mapping to the Terminate action and, if found, use
              XKEYBOARD for processing actions, otherwise the builtin  handler
              will be used.

       Option "AIGLX" "boolean"
              enable or disable AIGLX. AIGLX is enabled by default.

       Option "UseDefaultFontPath" "boolean"
              Include  the default font path even if other paths are specified
              in xorg.conf. If enabled, other font paths are included as well.
              Enabled by default.

       Option "IgnoreABI" "boolean"
              Allow  modules  built  for a different, potentially incompatible
              version of the X server to load. Disabled by default.

MODULE SECTION
       The Module section is used to specify which Xorg server modules  should
       be  loaded.   This  section is ignored when the Xorg server is built in
       static form.  The types of modules normally loaded in this section  are
       Xorg server extension modules, and font rasteriser modules.  Most other
       module types are loaded automatically when they are  needed  via  other
       mechanisms.   The Module section is optional, as are all of the entries
       that may be specified in it.

       Entries in this section may be in two forms.  The first and  most  com-
       monly  used  form  is an entry that uses the Load keyword, as described
       here:

       Load  "modulename"
              This instructs the server to load the module called  modulename.
              The  module name given should be the module's standard name, not
              the module file name.  The standard name is case-sensitive,  and
              does  not  include the "lib" prefix, or the ".a", ".o", or ".so"
              suffixes.

              Example: the FreeType font rasteriser can  be  loaded  with  the
              following entry:

                  Load "freetype"

       Disable  "modulename"
              This  instructs the server to not load the module called module-
              name.  Some modules are loaded by default  in  the  server,  and
              this  overrides that default. If a Load instruction is given for
              the same module, it overrides the Disable  instruction  and  the
              module  is  loaded. The module name given should be the module's
              standard name, not the  module  file  name.  As  with  the  Load
              instruction,  the  standard name is case-sensitive, and does not
              include the "lib" prefix, or the ".a", ".o", or ".so"  suffixes.

       The  second  form  of  entry  is a SubSection, with the subsection name
       being the module name, and the contents of the SubSection being Options
       that are passed to the module when it is loaded.

       Example:  the  extmod  module  (which contains a miscellaneous group of
       server extensions) can be loaded, with the XFree86-DGA  extension  dis-
       abled by using the following entry:

           SubSection "extmod"
              Option  "omit XFree86-DGA"
           EndSubSection

       Modules  are searched for in each directory specified in the ModulePath
       search path, and in the drivers, input, extensions, fonts, and internal
       subdirectories  of  each  of  those  directories.  In addition to this,
       operating system specific subdirectories of all the above are  searched
       first if they exist.

       To  see  what  font and extension modules are available, check the con-
       tents of the following directories:

           /usr/lib/modules/fonts
           /usr/lib/modules/extensions

       The "bitmap" font module is loaded automatically.   It  is  recommended
       that  at  very  least  the  "extmod" extension module be loaded.  If it
       isn't, some commonly used server extensions (like the SHAPE  extension)
       will not be available.

INPUTDEVICE SECTION
       The  config  file  may  have multiple InputDevice sections.  There will
       normally be at least two: one for the core (primary) keyboard, and  one
       of the core pointer.  If either of these two is missing, a default con-
       figuration for the missing ones will be used.   Currently  the  default
       configuration may not work as expected on all platforms.

       InputDevice sections have the following format:

           Section "InputDevice"
               Identifier "name"
               Driver     "inputdriver"
               options
               ...
           EndSection

       The  Identifier and Driver entries are required in all InputDevice sec-
       tions.  All other entries are optional.

       The Identifier entry specifies the unique name for this  input  device.
       The Driver entry specifies the name of the driver to use for this input
       device.  When using  the  loadable  server,  the  input  driver  module
       "inputdriver"  will  be loaded for each active InputDevice section.  An
       InputDevice section is considered active if  it  is  referenced  by  an
       active  ServerLayout  section,  if it is referenced by the -keyboard or
       -pointer command line options, or if it is selected implicitly  as  the
       core  pointer or keyboard device in the absence of such explicit refer-
       ences.  The most  commonly  used  input  drivers  are  keyboard(4)  and
       mouse(4).

       In  the absence of an explicitly specified core input device, the first
       InputDevice marked as CorePointer (or CoreKeyboard) is used.  If  there
       is  no  match  there,  the  first InputDevice that uses the "mouse" (or
       "keyboard" or "kbd") driver is used.  The  final  fallback  is  to  use
       built-in default configurations.

       InputDevice  sections  recognise some driver-independent Options, which
       are described here.  See the individual input driver manual pages for a
       description of the device-specific options.

       Option "CorePointer"
              When  this  is  set,  the  input device is installed as the core
              (primary) pointer  device.   There  must  be  exactly  one  core
              pointer.  If this option is not set here, or in the ServerLayout
              section, or from the -pointer  command  line  option,  then  the
              first  input  device  that  is  capable  of being used as a core
              pointer will be selected as the core pointer.   This  option  is
              implicitly set when the obsolete Pointer section is used.

       Option "CoreKeyboard"
              When  this  is  set,  the input device is to be installed as the
              core (primary) keyboard device.  There must be exactly one  core
              keyboard.   If  this option is not set here, in the ServerLayout
              section, or from the -keyboard command  line  option,  then  the
              first  input device that is capable of being used as a core key-
              board will be selected as the core  keyboard.   This  option  is
              implicitly set when the obsolete Keyboard section is used.

       Option "AlwaysCore"  "boolean"

       Option "SendCoreEvents"  "boolean"
              Both of these options are equivalent, and when enabled cause the
              input device to always report core events.  This  can  be  used,
              for  example,  to allow an additional pointer device to generate
              core pointer events (like moving the cursor, etc).

       Option "HistorySize"  "number"
           Sets the motion history size.  Default: 0.

       Option "SendDragEvents"  "boolean"
              ???

DEVICE SECTION
       The config file may have multiple Device sections.  There  must  be  at
       least one, for the video card being used.

       Device sections have the following format:

           Section "Device"
               Identifier "name"
               Driver     "driver"
               entries
               ...
           EndSection

       The  Identifier and Driver entries are required in all Device sections.
       All other entries are optional.

       The Identifier entry  specifies  the  unique  name  for  this  graphics
       device.   The  Driver entry specifies the name of the driver to use for
       this graphics device.  When using the loadable server, the driver  mod-
       ule  "driver"  will be loaded for each active Device section.  A Device
       section is considered active if it is referenced by  an  active  Screen
       section.

       Device  sections recognise some driver-independent entries and Options,
       which  are  described  here.   Not  all  drivers  make  use  of   these
       driver-independent  entries,  and  many  of those that do don't require
       them to be specified because the information is auto-detected.  See the
       individual  graphics  driver manual pages for further information about
       this, and for a description of the device-specific options.  Note  that
       most  of  the  Options  listed  here (but not the other entries) may be
       specified in the Screen section instead of here in the Device  section.

       BusID  "bus-id"
              This  specifies  the  bus  location  of  the graphics card.  For
              PCI/AGP   cards,   the    bus-id    string    has    the    form
              PCI:bus:device:function  (e.g., "PCI:1:0:0" might be appropriate
              for an AGP card).  This field is usually optional in single-head
              configurations  when using the primary graphics card.  In multi-
              head configurations, or when using a secondary graphics card  in
              a  single-head configuration, this entry is mandatory.  Its main
              purpose is to make an unambiguous connection between the  device
              section  and  the hardware it is representing.  This information
              can usually be found by running the Xorg server with the  -scan-
              pci command line option.

       Screen  number
              This option is mandatory for cards where a single PCI entity can
              drive more than one display (i.e., multiple CRTCs sharing a sin-
              gle  graphics accelerator and video memory).  One Device section
              is required for each head, and this parameter  determines  which
              head  each  of the Device sections applies to.  The legal values
              of number range from 0 to one less  than  the  total  number  of
              heads  per entity.  Most drivers require that the primary screen
              (0) be present.

       Chipset  "chipset"
              This usually optional entry specifies the chipset  used  on  the
              graphics  board.   In  most  cases  this  entry  is not required
              because the drivers will probe the  hardware  to  determine  the
              chipset type.  Don't specify it unless the driver-specific docu-
              mentation recommends that you do.

       Ramdac  "ramdac-type"
              This optional entry specifies the type of  RAMDAC  used  on  the
              graphics  board.  This is only used by a few of the drivers, and
              in most cases it is not required because the drivers will  probe
              the hardware to determine the RAMDAC type where possible.  Don't
              specify it unless the driver-specific  documentation  recommends
              that you do.

       DacSpeed  speed

       DacSpeed  speed-8 speed-16 speed-24 speed-32
              This  optional entry specifies the RAMDAC speed rating (which is
              usually printed on the RAMDAC chip).  The speed is in MHz.  When
              one  value  is given, it applies to all framebuffer pixel sizes.
              When multiple values are given, they apply  to  the  framebuffer
              pixel  sizes 8, 16, 24 and 32 respectively.  This is not used by
              many drivers, and only needs to be specified when the speed rat-
              ing  of  the  RAMDAC  is different from the defaults built in to
              driver,  or  when  the  driver  can't  auto-detect  the  correct
              defaults.   Don't specify it unless the driver-specific documen-
              tation recommends that you do.

       Clocks  clock ...
              specifies the pixel that are on your graphics board.  The clocks
              are  in  MHz,  and  may be specified as a floating point number.
              The value is stored internally to the nearest kHz.  The ordering
              of  the  clocks  is important.  It must match the order in which
              they are selected on the graphics board.  Multiple Clocks  lines
              may  be  specified,  and  each is concatenated to form the list.
              Most drivers do not use this entry, and it is only required  for
              some  older  boards with non-programmable clocks.  Don't specify
              this entry unless the driver-specific  documentation  explicitly
              recommends that you do.

       ClockChip  "clockchip-type"
              This  optional  entry  is used to specify the clock chip type on
              graphics boards which have a programmable clock generator.  Only
              a  few  Xorg  drivers  support  programmable  clock  chips.  For
              details, see the appropriate driver manual page.

       VideoRam  mem
              This optional entry specifies the amount of video  ram  that  is
              installed  on  the  graphics board.  This is measured in kBytes.
              In most cases this is  not  required  because  the  Xorg  server
              probes  the  graphics  board  to  determine  this quantity.  The
              driver-specific documentation should indicate when it  might  be
              needed.

       BiosBase  baseaddress
              This optional entry specifies the base address of the video BIOS
              for the VGA board.  This address is normally auto-detected,  and
              should  only  be  specified if the driver-specific documentation
              recommends it.

       MemBase  baseaddress
              This optional entry specifies  the  memory  base  address  of  a
              graphics board's linear frame buffer.  This entry is not used by
              many drivers, and it should only be specified if the driver-spe-
              cific documentation recommends it.

       IOBase  baseaddress
              This  optional  entry specifies the IO base address.  This entry
              is not used by many drivers, and it should only be specified  if
              the driver-specific documentation recommends it.

       ChipID  id
              This  optional  entry  specifies a numerical ID representing the
              chip type.  For PCI cards, it is usually the  device  ID.   This
              can be used to override the auto-detection, but that should only
              be done when the driver-specific documentation recommends it.

       ChipRev  rev
              This optional entry specifies the chip  revision  number.   This
              can be used to override the auto-detection, but that should only
              be done when the driver-specific documentation recommends it.

       TextClockFreq  freq
              This optional entry specifies the pixel clock frequency that  is
              used  for  the regular text mode.  The frequency is specified in
              MHz.  This is rarely used.

       Option "ModeDebug" "boolean"
              Enable printing of additional debugging information about  mode-
              setting to the server log.

       Options
              Option  flags  may  be  specified in the Device sections.  These
              include driver-specific options and driver-independent  options.
              The  former  are described in the driver-specific documentation.
              Some of the latter are described below in the section about  the
              Screen section, and they may also be included here.

VIDEOADAPTOR SECTION
       Nobody wants to say how this works.  Maybe nobody knows ...

MONITOR SECTION
       The  config file may have multiple Monitor sections.  There should nor-
       mally be at least one, for the monitor being used, but a  default  con-
       figuration will be created when one isn't specified.

       Monitor sections have the following format:

           Section "Monitor"
               Identifier "name"
               entries
               ...
           EndSection

       The  only mandatory entry in a Monitor section is the Identifier entry.

       The Identifier entry specifies the unique name for this  monitor.   The
       Monitor section may be used to provide information about the specifica-
       tions of the monitor, monitor-specific Options, and  information  about
       the video modes to use with the monitor.

       With  RandR  1.2-enabled  drivers, monitor sections may be tied to spe-
       cific outputs of the video card.  Using the name of the output  defined
       by the video driver plus the identifier of a monitor section, one asso-
       ciates a monitor section with an output by  adding  an  option  to  the
       Device section in the following format:

       Option "Monitor-outputname" "monitorsection"

       (for example, Option "Monitor-VGA" "VGA monitor" for a VGA output)

       In  the absence of specific association of monitor sections to outputs,
       if a monitor section is present the server will associate  it  with  an
       output  to  preserve  compatibility for previous single-head configura-
       tions.

       Specifying video modes is optional because the server will use the  DDC
       or other information provided by the monitor to automatically configure
       the list of modes available.  When modes are  specified  explicitly  in
       the  Monitor  section (with the Modes, ModeLine, or UseModes keywords),
       built-in modes with the same names are not  included.   Built-in  modes
       with different names are, however, still implicitly included, when they
       meet the requirements of the monitor.

       The entries that may be used in Monitor sections are described below.

       VendorName  "vendor"
              This optional entry specifies the monitor's manufacturer.

       ModelName  "model"
              This optional entry specifies the monitor's model.

       HorizSync  horizsync-range
              gives the range(s) of horizontal sync frequencies  supported  by
              the  monitor.   horizsync-range may be a comma separated list of
              either discrete values or ranges of values.  A range  of  values
              is two values separated by a dash.  By default the values are in
              units of kHz.  They may be specified in MHz or Hz if MHz  or  Hz
              is added to the end of the line.  The data given here is used by
              the Xorg server to determine if video modes are within the spec-
              ifications of the monitor.  This information should be available
              in the monitor's handbook.  If this entry is omitted, a  default
              range of 28-33kHz is used.

       VertRefresh  vertrefresh-range
              gives  the range(s) of vertical refresh frequencies supported by
              the monitor.  vertrefresh-range may be a comma separated list of
              either  discrete  values or ranges of values.  A range of values
              is two values separated by a dash.  By default the values are in
              units  of Hz.  They may be specified in MHz or kHz if MHz or kHz
              is added to the end of the line.  The data given here is used by
              the Xorg server to determine if video modes are within the spec-
              ifications of the monitor.  This information should be available
              in  the monitor's handbook.  If this entry is omitted, a default
              range of 43-72Hz is used.

       DisplaySize  width height
              This optional entry gives the width and height, in  millimetres,
              of  the  picture  area of the monitor.  If given this is used to
              calculate the horizontal and vertical pitch (DPI) of the screen.

       Gamma  gamma-value

       Gamma  red-gamma green-gamma blue-gamma
              This  is an optional entry that can be used to specify the gamma
              correction for the monitor.  It may be  specified  as  either  a
              single value or as three separate RGB values.  The values should
              be in the range 0.1 to 10.0, and the default is  1.0.   Not  all
              drivers are capable of using this information.

       UseModes  "modesection-id"
              Include the set of modes listed in the Modes section called mod-
              esection-id.  This makes all of the modes defined in  that  sec-
              tion available for use by this monitor.

       Mode  "name"
              This is an optional multi-line entry that can be used to provide
              definitions for video modes for the monitor.  In most cases this
              isn't  necessary because the built-in set of VESA standard modes
              will be sufficient.  The Mode keyword indicates the start  of  a
              multi-line video mode description.  The mode description is ter-
              minated with the EndMode keyword.  The mode description consists
              of the following entries:

              DotClock  clock
                  is the dot (pixel) clock rate to be used for the mode.

              HTimings  hdisp hsyncstart hsyncend htotal
                  specifies the horizontal timings for the mode.

              VTimings  vdisp vsyncstart vsyncend vtotal
                  specifies the vertical timings for the mode.

              Flags  "flag" ...
                  specifies  an optional set of mode flags, each of which is a
                  separate string in  double  quotes.   "Interlace"  indicates
                  that  the mode is interlaced.  "DoubleScan" indicates a mode
                  where each scanline is doubled.  "+HSync" and  "-HSync"  can
                  be  used  to  select  the  polarity  of  the  HSync  signal.
                  "+VSync" and "-VSync" can be used to select the polarity  of
                  the  VSync  signal.  "Composite" can be used to specify com-
                  posite sync on hardware where this is supported.   Addition-
                  ally, on some hardware, "+CSync" and "-CSync" may be used to
                  select the composite sync polarity.

              HSkew  hskew
                  specifies the number of pixels (towards the  right  edge  of
                  the  screen)  by  which  the  display enable signal is to be
                  skewed.  Not all drivers use this information.  This  option
                  might  become  necessary  to override the default value sup-
                  plied by the server (if  any).   "Roving"  horizontal  lines
                  indicate  this value needs to be increased.  If the last few
                  pixels on a scan line appear on the left of the screen, this
                  value should be decreased.

              VScan  vscan
                  specifies  the  number  of times each scanline is painted on
                  the screen.  Not all drivers use this  information.   Values
                  less  than 1 are treated as 1, which is the default.  Gener-
                  ally, the "DoubleScan" Flag  mentioned  above  doubles  this
                  value.

       ModeLine  "name" mode-description
              This  entry  is a more compact version of the Mode entry, and it
              also can be used to specify video modes for the monitor.   is  a
              single  line  format  for specifying video modes.  In most cases
              this isn't necessary because the built-in set of  VESA  standard
              modes will be sufficient.

              The  mode-description  is  in  four sections, the first three of
              which are mandatory.  The first is the dot (pixel) clock.   This
              is  a single number specifying the pixel clock rate for the mode
              in MHz.  The second section is a list of four numbers specifying
              the  horizontal  timings.   These  numbers are the hdisp, hsync-
              start, hsyncend, and htotal values.  The third section is a list
              of  four numbers specifying the vertical timings.  These numbers
              are the vdisp, vsyncstart, vsyncend,  and  vtotal  values.   The
              final  section  is a list of flags specifying other characteris-
              tics of the mode.  Interlace indicates that the mode  is  inter-
              laced.   DoubleScan indicates a mode where each scanline is dou-
              bled.  +HSync and -HSync can be used to select the  polarity  of
              the  HSync  signal.  +VSync and -VSync can be used to select the
              polarity of the VSync signal.  Composite can be used to  specify
              composite  sync  on hardware where this is supported.  Addition-
              ally, on some hardware, +CSync and -CSync may be used to  select
              the  composite  sync polarity.  The HSkew and VScan options men-
              tioned above in the Modes entry description  can  also  be  used
              here.

       Option "DPMS"  "bool"
              This  option  controls whether the server should enable the DPMS
              extension for power management for this screen.  The default  is
              to enable the extension.

       Option "SyncOnGreen"  "bool"
              This  option  controls  whether  the video card should drive the
              sync signal on the green color pin.  Not all cards support  this
              option,  and  most  monitors  do not require it.  The default is
              off.

       Option "TargetRefresh"  "rate"
              This optional entry specifies the vertical refresh rate that the
              server  should aim for when selecting video modes.  Without this
              option, the default is  to  prefer  modes  with  higher  refresh
              rates.

       Option "PreferredMode"  "string"
              This  optional  entry  specifies a mode to be marked as the pre-
              ferred initial  mode  of  the  monitor.   (RandR  1.2-supporting
              drivers only)

       Option "Position"  "x y"
              This optional entry specifies the position of the monitor within
              the X screen.  (RandR 1.2-supporting drivers only)

       Option "LeftOf"  "monitor"
              This optional entry specifies that the monitor should  be  posi-
              tioned  to  the  left  of the monitor of the given name.  (RandR
              1.2-supporting drivers only)

       Option "RightOf"  "monitor"
              This optional entry specifies that the monitor should  be  posi-
              tioned  to  the  right of the monitor of the given name.  (RandR
              1.2-supporting drivers only)

       Option "Above"  "monitor"
              This optional entry specifies that the monitor should  be  posi-
              tioned above the monitor of the given name.  (RandR 1.2-support-
              ing drivers only)

       Option "Below"  "monitor"
              This optional entry specifies that the monitor should  be  posi-
              tioned below the monitor of the given name.  (RandR 1.2-support-
              ing drivers only)

       Option "Enable"  "bool"
              This optional entry specifies  whether  the  monitor  should  be
              turned  on  at  startup.  By default, the server will attempt to
              enable all connected monitors.   (RandR  1.2-supporting  drivers
              only)

       Option "MinClock"  "frequency"
              This  optional  entry  specifies  the minimum dot clock, in kHz,
              that is supported by the monitor.

       Option "MaxClock"  "frequency"
              This optional entry specifies the maximum  dot  clock,  in  kHz,
              that is supported by the monitor.

       Option "Ignore"  "bool"
              This optional entry specifies that the monitor should be ignored
              entirely, and not reported through RandR.  This is useful if the
              hardware  reports  the  presence  of  outputs  that don't exist.
              (RandR 1.2-supporting drivers only)

       Option "Rotate"  "rotation"
              This optional entry specifies the initial rotation of the  given
              monitor.   Valid  values  for  rotation  are  "normal",  "left",
              "right", and "inverted".  (RandR 1.2-supporting drivers only)

MODES SECTION
       The config file may have multiple Modes sections, or none.  These  sec-
       tions  provide  a  way of defining sets of video modes independently of
       the Monitor sections.  Monitor sections  may  include  the  definitions
       provided  in  these  sections  by  using the UseModes keyword.  In most
       cases the Modes sections are not necessary because the built-in set  of
       VESA standard modes will be sufficient.

       Modes sections have the following format:

           Section "Modes"
               Identifier "name"
               entries
               ...
           EndSection

       The  Identifier  entry  specifies  the unique name for this set of mode
       descriptions.  The other entries permitted in Modes  sections  are  the
       Mode  and ModeLine entries that are described above in the Monitor sec-
       tion.

SCREEN SECTION
       The config file may have multiple Screen sections.  There  must  be  at
       least  one,  for  the  "screen"  being used.  A "screen" represents the
       binding of a graphics device (Device section) and  a  monitor  (Monitor
       section).   A Screen section is considered "active" if it is referenced
       by an active ServerLayout  section  or  by  the  -screen  command  line
       option.  If neither of those is present, the first Screen section found
       in the config file is considered the active one.

       Screen sections have the following format:

           Section "Screen"
               Identifier "name"
               Device     "devid"
               Monitor    "monid"
               entries
               ...
               SubSection "Display"
                  entries
                  ...
               EndSubSection
               ...
           EndSection

       The Identifier and  Device  entries  are  mandatory.   All  others  are
       optional.

       The  Identifier  entry  specifies the unique name for this screen.  The
       Screen section provides  information  specific  to  the  whole  screen,
       including screen-specific Options.  In multi-head configurations, there
       will be multiple active  Screen  sections,  one  for  each  head.   The
       entries available for this section are:

       Device  "device-id"
              This mandatory entry specifies the Device section to be used for
              this screen.  This is what ties a specific graphics  card  to  a
              screen.   The  device-id  must  match the Identifier of a Device
              section in the config file.

       Monitor  "monitor-id"
              specifies which monitor description  is  to  be  used  for  this
              screen.   If a Monitor name is not specified, a default configu-
              ration is used.  Currently the  default  configuration  may  not
              function as expected on all platforms.

       VideoAdaptor  "xv-id"
              specifies  an  optional  Xv video adaptor description to be used
              with this screen.

       DefaultDepth  depth
              specifies which color depth the server should  use  by  default.
              The -depth command line option can be used to override this.  If
              neither is specified, the default depth is driver-specific,  but
              in most cases is 8.

       DefaultFbBpp  bpp
              specifies  which  framebuffer  layout  to  use  by default.  The
              -fbbpp command line option can be used  to  override  this.   In
              most  cases  the  driver  will  chose the best default value for
              this.  The only case where there is even a choice in this  value
              is  for  depth 24, where some hardware supports both a packed 24
              bit framebuffer layout and a sparse 32 bit framebuffer layout.

       Options
              Various Option flags may be specified  in  the  Screen  section.
              Some  are  driver-specific and are described in the driver docu-
              mentation.  Others are driver-independent, and  will  eventually
              be described here.

       Option "Accel"
              Enables  XAA  (X  Acceleration  Architecture),  a mechanism that
              makes video cards' 2D hardware  acceleration  available  to  the
              __xservername__  server.   This  option is on by default, but it
              may be necessary to turn it off if there are bugs in the driver.
              There  are  many  options to disable specific accelerated opera-
              tions, listed below.  Note that disabling an operation will have
              no  effect  if  the operation is not accelerated (whether due to
              lack of support in the hardware or in the driver).

       Option "InitPrimary" "boolean"
              Use the Int10 module to initialize the  primary  graphics  card.
              Normally,  only  secondary cards are soft-booted using the Int10
              module, as the primary card has already been initialized by  the
              BIOS at boot time.  Default: false.

       Option "NoInt10" "boolean"
              Disables  the Int10 module, a module that uses the int10 call to
              the BIOS of the graphics card to initialize it.  Default: false.

       Option "NoMTRR"
              Disables MTRR (Memory Type Range Register) support, a feature of
              modern processors which can improve video performance by a  fac-
              tor  of  up  to  2.5.  Some hardware has buggy MTRR support, and
              some video drivers have been  known  to  exhibit  problems  when
              MTRR's are used.

       Option "XaaNoCPUToScreenColorExpandFill"
              Disables  accelerated  rectangular  expansion  blits from source
              patterns  stored  in  system  memory  (using   a   memory-mapped
              aperture).

       Option "XaaNoColor8x8PatternFillRect"
              Disables  accelerated  fills  of  a  rectangular  region  with a
              full-color pattern.

       Option "XaaNoColor8x8PatternFillTrap"
              Disables accelerated  fills  of  a  trapezoidal  region  with  a
              full-color pattern.

       Option "XaaNoDashedBresenhamLine"
              Disables accelerated dashed Bresenham line draws.

       Option "XaaNoDashedTwoPointLine"
              Disables  accelerated  dashed  line  draws between two arbitrary
              points.

       Option "XaaNoImageWriteRect"
              Disables accelerated transfers of  full-color  rectangular  pat-
              terns  from system memory to video memory (using a memory-mapped
              aperture).

       Option "XaaNoMono8x8PatternFillRect"
              Disables accelerated  fills  of  a  rectangular  region  with  a
              monochrome pattern.

       Option "XaaNoMono8x8PatternFillTrap"
              Disables  accelerated  fills  of  a  trapezoidal  region  with a
              monochrome pattern.

       Option "XaaOffscreenPixmaps"
              Enables accelerated draws into pixmaps stored in offscreen video
              memory.

       Option "XaaNoPixmapCache"
              Disables caching of patterns in offscreen video memory.

       Option "XaaNoScanlineCPUToScreenColorExpandFill"
              Disables  accelerated  rectangular  expansion  blits from source
              patterns stored in system memory (one scan line at a time).

       Option "XaaNoScanlineImageWriteRect"
              Disables accelerated transfers of  full-color  rectangular  pat-
              terns  from  system  memory  to video memory (one scan line at a
              time).

       Option "XaaNoScreenToScreenColorExpandFill"
              Disables accelerated rectangular  expansion  blits  from  source
              patterns stored in offscreen video memory.

       Option "XaaNoScreenToScreenCopy"
              Disables accelerated copies of rectangular regions from one part
              of video memory to another part of video memory.

       Option "XaaNoSolidBresenhamLine"
              Disables accelerated solid Bresenham line draws.

       Option "XaaNoSolidFillRect"
              Disables accelerated solid-color fills of rectangles.

       Option "XaaNoSolidFillTrap"
              Disables accelerated solid-color fills of Bresenham  trapezoids.

       Option "XaaNoSolidHorVertLine"
              Disables accelerated solid horizontal and vertical line draws.

       Option "XaaNoSolidTwoPointLine"
              Disables  accelerated  solid  line  draws  between two arbitrary
              points.

       Each Screen section may optionally contain one or more Display  subsec-
       tions.   Those  subsections  provide depth/fbbpp specific configuration
       information, and the one chosen depends on the depth and/or fbbpp  that
       is  being  used  for  the  screen.   The  Display  subsection format is
       described in the section below.

DISPLAY SUBSECTION
       Each  Screen  section  may  have  multiple  Display  subsections.   The
       "active"  Display subsection is the first that matches the depth and/or
       fbbpp values being used, or failing that, the first that has neither  a
       depth  or fbbpp value specified.  The Display subsections are optional.
       When there isn't one that matches the depth and/or fbbpp  values  being
       used,  all the parameters that can be specified here fall back to their
       defaults.

       Display subsections have the following format:

               SubSection "Display"
                   Depth  depth
                   entries
                   ...
               EndSubSection

       Depth  depth
              This entry specifies what colour depth the Display subsection is
              to  be used for.  This entry is usually specified, but it may be
              omitted to create a match-all Display subsection or when wishing
              to  match  only against the FbBpp parameter.  The range of depth
              values that are allowed depends on  the  driver.   Most  drivers
              support  8,  15,  16  and 24.  Some also support 1 and/or 4, and
              some may support other values (like 30).  Note: depth means  the
              number  of  bits  in a pixel that are actually used to determine
              the pixel colour.  32 is not a valid depth value.  Most hardware
              that  uses  32  bits  per pixel only uses 24 of them to hold the
              colour information, which means that the colour depth is 24, not
              32.

       FbBpp  bpp
              This entry specifies the framebuffer format this Display subsec-
              tion is to be used for.  This entry is only needed when  provid-
              ing depth 24 configurations that allow a choice between a 24 bpp
              packed framebuffer format and a 32bpp sparse framebuffer format.
              In most cases this entry should not be used.

       Weight  red-weight green-weight blue-weight
              This  optional  entry specifies the relative RGB weighting to be
              used for a screen is being used at depth  16  for  drivers  that
              allow  multiple  formats.   This  may also be specified from the
              command line with the -weight option (see Xorg(1)).

       Virtual  xdim ydim
              This optional entry specifies the virtual screen  resolution  to
              be  used.   xdim  must  be a multiple of either 8 or 16 for most
              drivers, and a multiple of 32 when running in  monochrome  mode.
              The  given  value  will be rounded down if this is not the case.
              Video modes which are too large for the specified  virtual  size
              will  be  rejected.   If  this entry is not present, the virtual
              screen resolution will be set to accommodate all the valid video
              modes  given in the Modes entry.  Some drivers/hardware combina-
              tions do not support virtual screens.  Refer to the  appropriate
              driver-specific documentation for details.

       ViewPort  x0 y0
              This  optional  entry  sets the upper left corner of the initial
              display.  This is only relevant when the virtual screen  resolu-
              tion is different from the resolution of the initial video mode.
              If this entry is not given, then the  initial  display  will  be
              centered in the virtual display area.

       Modes  "mode-name" ...
              This  optional  entry  specifies the list of video modes to use.
              Each mode-name specified must be in double  quotes.   They  must
              correspond  to  those specified or referenced in the appropriate
              Monitor section (including implicitly referenced  built-in  VESA
              standard  modes).   The  server will delete modes from this list
              which don't satisfy various requirements.  The first valid  mode
              in  this list will be the default display mode for startup.  The
              list of valid modes is  converted  internally  into  a  circular
              list.    It  is  possible  to  switch  to  the  next  mode  with
              Ctrl+Alt+Keypad-Plus and to the previous mode with Ctrl+Alt+Key-
              pad-Minus.   When  this entry is omitted, the valid modes refer-
              enced by the appropriate Monitor section will be used.   If  the
              Monitor  section  contains  no modes, then the selection will be
              taken from the built-in VESA standard modes.

       Visual  "visual-name"
              This optional entry sets the default root visual type.  This may
              also  be specified from the command line (see the Xserver(1) man
              page).  The visual types available for depth 8 are  (default  is
              PseudoColor):

                  StaticGray
                  GrayScale
                  StaticColor
                  PseudoColor
                  TrueColor
                  DirectColor

              The  visual  type  available  for  the  depths 15, 16 and 24 are
              (default is TrueColor):

                  TrueColor
                  DirectColor

              Not all drivers support DirectColor at these depths.

              The visual types available for the depth 4 are (default is Stat-
              icColor):

                  StaticGray
                  GrayScale
                  StaticColor
                  PseudoColor

              The  visual type available for the depth 1 (monochrome) is Stat-
              icGray.

       Black  red green blue
              This optional entry allows the "black" colour to  be  specified.
              This is only supported at depth 1.  The default is black.

       White  red green blue
              This  optional  entry allows the "white" colour to be specified.
              This is only supported at depth 1.  The default is white.

       Options
              Option flags may be specified in the Display subsections.  These
              may   include  driver-specific  options  and  driver-independent
              options.  The former are described in the driver-specific  docu-
              mentation.   Some  of the latter are described above in the sec-
              tion about the Screen section, and they  may  also  be  included
              here.

SERVERLAYOUT SECTION
       The  config  file  may  have multiple ServerLayout sections.  A "server
       layout" represents the binding of one or more screens (Screen sections)
       and one or more input devices (InputDevice sections) to form a complete
       configuration.  In multi-head configurations,  it  also  specifies  the
       relative  layout  of  the  heads.  A ServerLayout section is considered
       "active" if it is referenced by the -layout command line option  or  by
       an  Option  "DefaultServerLayout" entry in the ServerFlags section (the
       former takes precedence over the latter).  If  those  options  are  not
       used,  the  first ServerLayout section found in the config file is con-
       sidered the active one.  If no ServerLayout sections are  present,  the
       single  active  screen and two active (core) input devices are selected
       as described in the relevant sections above.

       ServerLayout sections have the following format:

           Section "ServerLayout"
               Identifier   "name"
               Screen       "screen-id"
               ...
               InputDevice  "idev-id"
               ...
               options
               ...
           EndSection

       Each ServerLayout section must have an Identifier entry  and  at  least
       one Screen entry.

       The  Identifier entry specifies the unique name for this server layout.
       The ServerLayout section provides information  specific  to  the  whole
       session,  including  session-specific Options.  The ServerFlags options
       (described above) may be specified here, and ones given  here  override
       those given in the ServerFlags section.

       The entries that may be used in this section are described here.

       Screen  screen-num "screen-id" position-information
              One of these entries must be given for each screen being used in
              a session.  The screen-id field is mandatory, and specifies  the
              Screen  section  being  referenced.   The  screen-num  field  is
              optional, and may be  used  to  specify  the  screen  number  in
              multi-head  configurations.   When  this  field  is omitted, the
              screens will be numbered in the order that they are  listed  in.
              The numbering starts from 0, and must be consecutive.  The posi-
              tion-information field describes the way  multiple  screens  are
              positioned.   There  are  a  number  of different ways that this
              information can be provided:

              x y

              Absolute  x y
                  These both specify that the upper left corner's  coordinates
                  are  (x,y).   The  Absolute keyword is optional.  Some older
                  versions of Xorg (4.2 and earlier) don't recognise the Abso-
                  lute keyword, so it's safest to just specify the coordinates
                  without it.

              RightOf   "screen-id"

              LeftOf    "screen-id"

              Above     "screen-id"

              Below     "screen-id"

              Relative  "screen-id" x y
                  These give the screen's location relative to another screen.
                  The first four position the screen immediately to the right,
                  left, above or below the other screen.  When positioning  to
                  the  right  or  left, the top edges are aligned.  When posi-
                  tioning above or below, the left  edges  are  aligned.   The
                  Relative  form  specifies  the offset of the screen's origin
                  (upper left  corner)  relative  to  the  origin  of  another
                  screen.

       InputDevice  "idev-id" "option" ...
              One of these entries should be given for each input device being
              used in a session.  Normally at least two are required, one each
              for  the  core pointer and keyboard devices.  If either of those
              is missing, suitable InputDevice entries are searched for  using
              the  method  described  above  in  the INPUTDEVICE section.  The
              idev-id field is mandatory, and specifies the name of the Input-
              Device  section being referenced.  Multiple option fields may be
              specified, each in double quotes.  The  options  permitted  here
              are  any  that  may  also  be given in the InputDevice sections.
              Normally only session-specific input  device  options  would  be
              used here.  The most commonly used options are:

                  "CorePointer"
                  "CoreKeyboard"
                  "SendCoreEvents"

              and  the  first two should normally be used to indicate the core
              pointer and core keyboard devices respectively.

       Options
              In addition to  the  following,  any  option  permitted  in  the
              ServerFlags  section  may also be specified here.  When the same
              option appears in both places, the value  given  here  overrides
              the one given in the ServerFlags section.

       Option "IsolateDevice"  "bus-id"
              Restrict  device  resets to the specified bus-id.  See the BusID
              option (described in DEVICE SECTION, above) for  the  format  of
              the  bus-id  parameter.   This  option  overrides SingleCard, if
              specified.  At present, only PCI devices can be isolated in this
              manner.

       Option "SingleCard"  "boolean"
              As  IsolateDevice, except that the bus ID of the first device in
              the layout is used.

       Here is an example of a ServerLayout section for a dual headed configu-
       ration with two mice:

           Section "ServerLayout"
               Identifier  "Layout 1"
               Screen      "MGA 1"
               Screen      "MGA 2" RightOf "MGA 1"
               InputDevice "Keyboard 1" "CoreKeyboard"
               InputDevice "Mouse 1"    "CorePointer"
               InputDevice "Mouse 2"    "SendCoreEvents"
               Option      "BlankTime"  "5"
           EndSection

DRI SECTION
       This  optional  section  is  used  to  provide some information for the
       Direct Rendering Infrastructure.  Details about the format of this sec-
       tion  can  be found in the README.DRI document, which is also available
       on-line at <http://dri.freedesktop.org/>.

VENDOR SECTION
       The optional Vendor section may be used to provide vendor-specific con-
       figuration  information.   Multiple Vendor sections may be present, and
       they may contain an Identifier entry and multiple  Option  flags.   The
       data therein is not used in this release.

SEE ALSO
       General: X(7), Xserver(1), Xorg(1).

       Not all modules or interfaces are available on all platforms.

       Display  drivers:  apm(4),  chips(4),  cirrus(4),  cyrix(4),  fbdev(4),
       glide(4), glint(4), i128(4), i740(4), i810(4), imstt(4),  mga(4),  neo-
       magic(4), nv(4), r128(4), rendition(4), savage(4), s3virge(4), silicon-
       motion(4),  sis(4),  sunbw2(4),   suncg14(4),   suncg3(4),   suncg6(4),
       sunffb(4), sunleo(4), suntcx(4), tdfx(4), tga(4), trident(4), tseng(4),
       vesa(4), vga(4), via(4), vmware(4).

       Input drivers: citron(4), dmc(4), dynapro(4), elographics(4),  fpit(4),
       js_x(4), kbd(4), keyboard(4), microtouch(4), mouse(4), mutouch(4), pal-
       max(4), penmount(4), tek4957(4), void(4), wacom(4).

       Other modules and interfaces: fbdevhw(4), v4l(4).

AUTHORS
       This   manual   page   was   largely   rewritten   by    David    Dawes
       <dawes@xfree86.org>.

X Version 11                   xorg-server 1.4.2                  xorg.conf(5)

Time taken: 0.00052 seconds


Created with the man page lookup class by Andrew Collington, php@amnuts.com